

Feedstock versus biochar

Poll:

In your opinion, what is the effect on **electrical conductivity** if you convert spent media into biochar?

Electrical conductivity:

- 1. Higher in biochar than in spent media
- 2. Lower in biochar than in spent media
- 3. No effect on EC

Feedstock versus biochar

Material	pH-H2O	EC	IC	ОС	Р	K	CEC	
	-	μS/cm	%/DM		g/kg DM		cmolc/kg	
Spent peat 1	6,3	599	0,06	46	0,8	3,0	112	
Spent coir 1	4,2	431	0,01	46	1,7	3,7	84	
Spent peat 2	5,7	912	0,08	43	0,8	3,2	109	
Spent coir 2	5,7	882	0,08	45	1,1	2,5	101	
Biochar, spent peat 1	8,7	718	0,08	78	2,4	8,3	18	
Biochar, spent coir 1	9,7	556	0,08	85	3,5	13,1	37	Y
Biochar, spent peat 2	9,6	747	0,72	71	2,1	9,7	14	
Biochar, spent coir 2	9,3	479	0,53	68	2,6	7,3	20	Mers 2

Porosity, CEC, Interaction

CEC: cation exchange capacity (cmolc/kg DM)

Peat: 130

Spent media (coir, peat): 85-115

Biochar based on spent media: 15-60

Biochar based on woody biomass: 30-95

Porosity (volume%):

- Peat: 95

- Biochar: 94-97

Interaction with nutrients (fertigation):

Peat: K retention

Biochar: no retention, source of P, K, salts

Peat-free organic growing media for tomato

Peat-reduced organic growing media for strawberry

Biochar from spent peat

trial	scale	Fruit Number	Yield	Fruit Size	Fruit Total Sugars/Brix	Sorting	Fruit weight
PCH	commercial	=	=		=	=	=
ADAS1	commercial		=				
ADAS2	experimental	=	=	=	=		
ADAS3	experimental	+	+	+	=		

Biochar from spent coir

Trial	Scale trial	Fruit Number	Marketable Yield (kg)	Fruit Size	Fruit Total Sugars	Fruit dry matter
ADAS	commercial	+	+		=	
ADAS	experimental	+	+	=	=	=

- Speat: alles bij 2g/L
- PCH_2020_T1 4g/L
- ADAS_2020_T1: at grower
- ADAS_2020_T2: at grower
- ADAS_2020_T3, 4g/L

- Scoir
- ADAS_2020_S1
- ADAS_2020_Commercial
- NIAB_2020_S2
- ADAS_2020_S2

scoring for use in growing media

effect of reuse on nutrient content

P use efficiency

Step 1. Scoring the suitability for growing media

Score: 12-13

Score: 10-13 Score: 9-12

Step 2 & 3. Nutrient availability for crops

Nutrients for crop uptake: Total content x availability

Total P and K content: biochar = compost > spent growing medium

K availability: high for biochar, compost and spent growing medium

P availability: high for spent growing medium > compost > biochar = spent

growing medium reused twice

N release: compost > spent growing medium > biochar

Conclusions: circular use of nutrients?

Nutrients in spent growing media: relevant!

- High P and K availability

Circular use of nutrients = repeated use?

- Nutrient specific:
 - N mineralisation is always low: add mineral N
 - K sufficient for 1 extra cycle
 - P relevant for > 1 extra cycle

From spent growing medium to biochar:

- No effect on EC
- strong increase of pH, C, P, K
- decrease of CEC

Work-in-progress

Effect fertigation on nutrient levels in spent media? => ongoing New blends => reuse, upcycling? => ongoing

Nutrients versus carbon

Poll:

In your opinion, what is main aspect for spent media to be taken into account for direct reuse, or use as feedstock?

- 1. Spent media as a source of (stable) C
- 2. Spent media as a source of nutrients
- 3. Pathogens in spent media
- 4. All three aspects are equally important

Legislation

Case for Flanders/Belgium

Important aspects for reuse (regional)

End-of-waste vs. waste treatment Location of cultivation vs. location of reuse Transport/Processing into compost/biochar

Trade as a fertilizer (national/EU)

Royal Decree or specific exemption EU: Criteria for CE mark on product: Under construction

Reuse of spent organic growing media at the grower's site (Flanders, B)

Use on own parcels (aim: added value for the soil)

Direct use as a soil improver

Environmental permit for installation

Bulking agent for composting

Feedstock for biochar production

Direct reuse after steaming

Reuse of spent organic growing media at other site (Flanders, B)

Waste => End-of-waste certificate for user

Direct use as a soil improver

Direct reuse after steaming

Waste => Waste transport + processing at certified facility

Bulking agent for composting

Feedstock for biochar production

Thanks for your kind attention!

www.horti-bluec.eu www.growingmedia2021.com

bart.vandecasteele@ilvo.vlaanderen.be

@growingmedia2021

https://www.youtube.com/channel/UCAmlINw5Yndql8UMLsEhLJQ

