

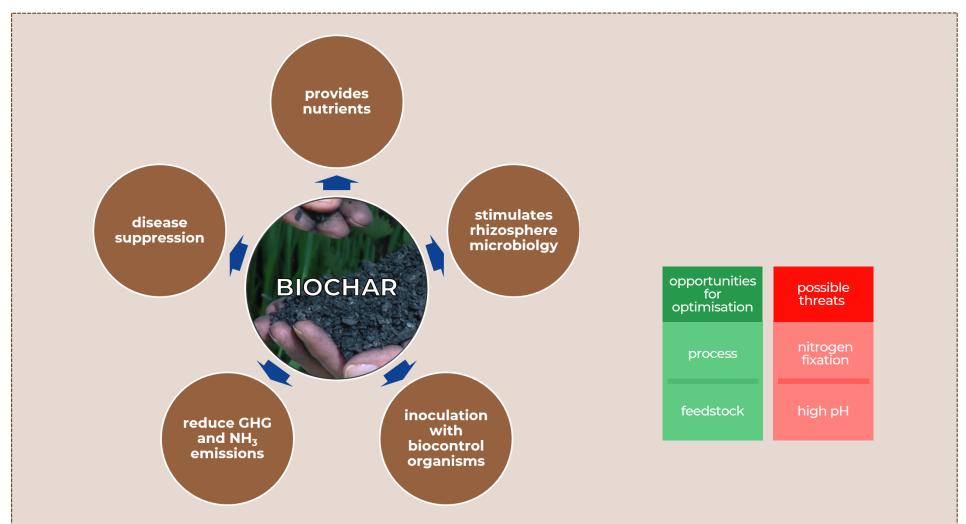
GROWING MEDIA (GM) BUILDING BLOCKS

= function of building block in GM

focus: structure for plant roots, production and yield (technological intensification)

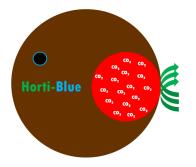
add power to the blend: higher microbial biomass (but higher microbial activity = lower stability), efficient nutrient use. growing media can positively affect plant growth (ecological intensification)

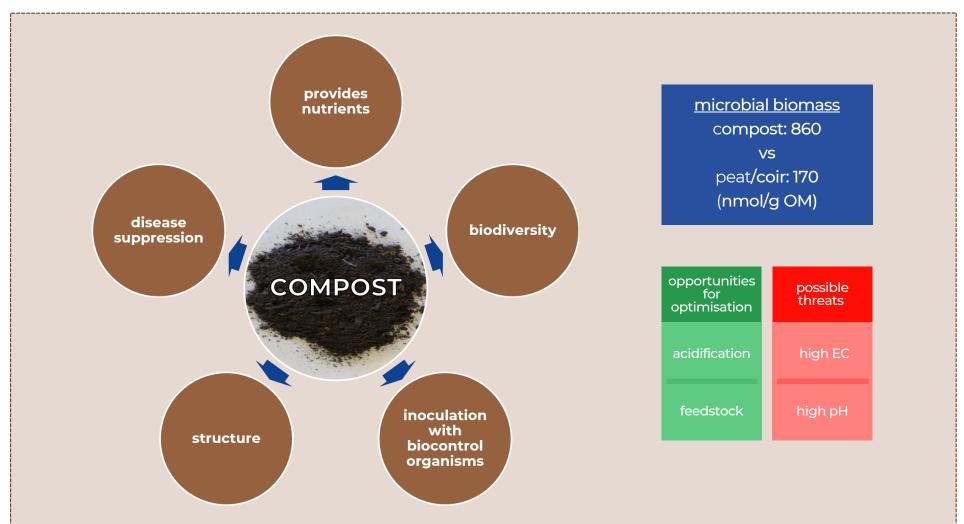
This table shows five new building blocks for sustainable growing media. For each of these building blocks, related scientific papers and videos are linked to the associated icons. The building blocks can be used for bulk replacement (>10 vol%) of peat, coir or mineral materials or they can be added to growing media in smaller amounts as amendment (max 5 g/L). Both the processing method from feedstock to building block and the feedstock itself can have an effect on the characteristics of the materials. To get more details on that, try out the Decision Tool. Some of the materials need sanitation to remove pathogens (heat or chemical treatment), before they can be added to growing media. Additional properties that need extra attention are also mentioned. Finally the Interreg 🍱

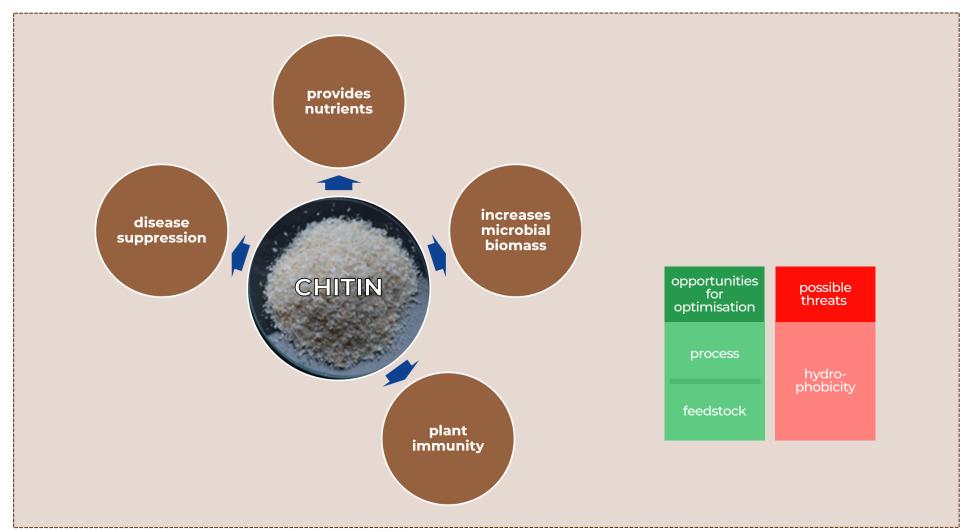

2 Seas Mers Zeeën

effect of the building blocks on the microbiology of the growing media is also highlighted (BCOs = biocontrol organisms).

DOI: 10.13140/RG.2.2.28859.54564			MORE INFO: <u>DECISION TOOL</u>				HOFTI-BlueC
	PAPER VIDEO	BULK OR AMENDMENT?	EFFECT OF FEEDSTOCK ON CHARACTERISTICS?	SANITATION NEEDED?	EFFECT OF PROCESS ON CHARACTERISTICS?	PAY ATTENTION TO?	EFFECT ON MICROBIOLOGY OF GM?
CHITIN		amendment	YES	via process	YES	source of N (microbial N release)	stimulates microbiology
BIOCHAR		bulk/ amendment	YES	via process	YES	increases pH	changes rhizosphere microbiology, inoculation with BCOs possible
SPENT GROWING MEDIA	□	bulk	YES	required	YES	source of P and K, low N- release	very low microbial activity
GREEN COMPOST		bulk	YES	via process	YES	source of P and K, low N- release	diverse microbial life
PLANT FIBRES	□ ■	bulk	YES	required/via process	YES	risk of N- fixation	inoculation with BCOs possible

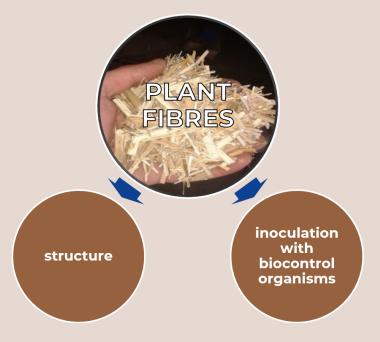





DOI: 10.13140/RG.2.2.28859.54564

DOI: 10.13140/RG.2.2.28859.54564

plant fibre feedstocks:


wood fibres

woody fraction of green waste

reed, soft rush, chopped heath or other vegetation

Miscanthus or other crops

flax shives or other crop residues

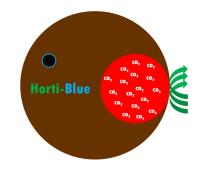
opportunities optimisation

defiberization

possible threats

N fixation

plant pathogens



More info

Watch recording

Factsheet

Webinar 2:

Production of chitin from shrimp shells or Chinese mitten crab

More info Watch recording **Factsheet**

Webinar 3:

Spent growing media for direct reuse or as a feedstock for biochar and compost

More info

Watch recording

Factsheet

Webinar 4:

New growing media blends for strawberry and tomato (with bulk repacement)

More info

Watch recording

Factsheet

