

WP 2: Validation of methods for plastics analysis in environmental samples

Results of the EUROqCHARM/QUASIMEME/NORMAN Interlaboratory Study on the Analysis of Microplastics in Environmental Matrices

Ike van der Veen, Bert van Bavel, Steven Crum 18th April 2023

Test materials

SEP7

QMP010SW	µg added to tablet	particle siz é µm)	
Polyethylene (PE)	36	50 - 299	
Polyethylene terephthalate (PET)	32	50 - 299	
Polystyrene (PS)	75	50 - 299	
QMP011SW	µg added to tablet	particle siz é µm)	
Polypropylene (PP)	41	50 - 299	
Polycarbonate (PC)	72	50 - 299	
i oljeu o olluce (i e)	62.97		
Polyvinylchloride (PVC)	72	50 - 299	

Participating laboratories n =98

(ILS 1: n=30, ILS 2: n= 35)

	Number				Mass			
	tablet QMP010SW	tablet QMP011SW	sand QMP014MS	sediment QMP015MS	tablet QMP010SW	tablet QMP011SW	sand QMP014MS	sediment QMP015MS
PE (50-299 μm)	96		122		NAV ²		NAV ³	
PE (300-5000 μm)				72				25
PET (50-299 μm)	92		102		NAV ³		NAV ³	
PS (50-299 μm)	76		108		12		NAV ³	
PP (50-299 μm)		81		125		NAV ³		NAV ³
PC (50-299 µm)		90		66		93		NAV ³
PVC (50-299 μm)		81		79		NAV ³		77

= No assigned value

Filter type

Methods for tablets, sediment and sand samples

Density separation

Methods for tablets, sediment and sand samples

VRIJE UNIVERSITEIT

Digestion

Methods for sediment and sand samples

Detection

Methods for tablets, sediment and sand samples

Detection (number)

Filter (number)

Harmonization of methods

Filter:

- Glass fibre most frequently used

 used by 14 participants (=19%)
 57% of the z-scores were satisfactory (number determination)
- Cellulose:
 - □ used by 6 participants (=8%)
 - □ 74% of the z-scores were satisfactory (number determination)
- ≥ 50 % of satisfactory z-scores for all filter types except for PTFE + anodisc (20%) and nylon + silicone (40%)

Density separation:

ZnCl2 and NaCl most frequently used

- ZnCl2 used by 14 participants (= 29%)

□ 42% of the z-scores were satisfactory (number determination) □ 44% |z| > 3

- NaCl used by 12 participants (= 24%)

□ 75% of the z-scores were satisfactory (number determination) □ all |z| < 3

Harmonization of methods

Digestion:

- H₂O₂ and Fenton most frequently used
 - H_2O_2 used by 11 participants (= 28%)
 - □ 53% of the z-scores were satisfactory (number determination)
 - □ 38% |z| > 3
 - Fenton used by 8 participants (= 20%)
 - □ 75% of the z-scores were satisfactory (number determination)
 - □ 8% |z| > 3

Harmonization of methods

Detection:

µFTIR most frequently used

□ used by 21 participants (=28%)

□ 62% of the z-scores were satisfactory (number determination)

$\mu RAMAN$

□ used by 7 participants

□ 69% of the z-scores were satisfactory (number determination)

Pyr-GC/MS

□ used by 9 participants

Large variation in detection methods.

- Interest in MP analyses increases (ILS 1: n=30, ILS 2: n= 35, this round n=67)
- Majority report on number, only a small number report on mass
- Mass determination: For most polymers too few data to calculate an assigned value
- NDA Rel st. dev. : 76-96 % for tablets (number)
 66-125 % for sediment sample (number)
 > 100 % / No assigned value for sand sample (number)

Conclusions

- Diversity in filter types, salts, digestion and detection methods
- Filter type: Almost all types ≥ 50 % of satisfactory z-score
 Glass fibre, Cellulose, Stainless steel and silicon most frequently used
- Density : ZnCl, NaCl and Nal most used

Conclusions

- Digestion: Fenton preferred (based on frequency of use, and % satisfactory z-scores)
- Detection: μFTIR and μRAMAN most used, all > 60% satisfactory z-scores.
 pyr-GC/MS used by 9 participants no assigned value calculated

Conclusions

Category 1: $n \ge 7$

AV based on model mean when:

- \geq 50% of values have a z'-score of |z'| < 2
- at least 5 values have a |z'| < 3.

Category 2: n > 3 and < 7

AV based on model mean when:
≥ 70% of values have a z'-score of |z'| < 3
≥ 4 observations have |z'| < 2.

Category 3: n < 4

No assigned value is given

