

Framework conditions for innovation

Using crop sensing data to assess field scale experiments in vegetable crops

Case studies from the INNO-VEG project on vining peas & onions

Field scale field experiments (2020 & 2021)

- Field scale farmer led experiments
- Farmers apply treatments
- Collect crop reflectance data
- Use spatial statistics to analyse data'

4

Field choice

- Even fields give more precise results
- Variation across the tramlines is acceptable
- Variation in line with the tramlines is a problem

INNO-VEG

Trial design

- Avoid confounding treatments with underlying variation
- Best to test fewer treatments
- Replication improves precision / confidence

Two test treatments interspersed with farm standard

Case study 1: Onions

- Research question: impact of N fertiliser rate
- Trial design:
 - Two replicated N rate treatments
 - Trial focused in south end of field as more even

P.G.RIX (FARMS) LTD

Interreg 2 Seas Mers Zeeën

Onions – treatment application

Two treatments

- Standard N Farm standard rate 130 kg N/ha
- Low N reduced rate of 40 kg N/ha

Treatments applied to plots 24 x 100 m

Treatment	Nitrogen rate (kg N/ha)	Application timing (kg N/ha)		
		T1 (21-Apr)	T2 (14-May)	T3 (12-Jun)
Low Nitrogen	40	40	0	0
Farm Standard Nitrogen	130	40	50	40

P.G.RIX (FARMS) LTD

20/04/2022

Onions – new drone imagery

- Multispectral images supplied for 8th July and 12th August
 - 5 wavelengths from MicaSense Red Edge drone mounted sensor
- Low N areas visible as lower NDVI

Onions – ground truthing

- 12 yield validation plots (3 per plot); 1 bed x 8m
- Sampled mean MS bands for each sample plot
- Calculated VIs from averaged MS bands
- Correlated VIs with marketable yield

	1 st flight (8 July)	2 nd flight (12 Aug)
NDVI	0.89	0.91
MCARI2	0.75	0.82
Clgreen	0.90	0.87
Clrededge	0.87	0.84
MTCI	0.84	0.50
NDRE	0.89	0.86
REIP	0.89	0.48

Interreg 2 Seas Mers Zeeën

Onions – data processing

Agronomics analysis requires point data (<12,500 points)

Crop grown in beds 1.5m wide with 0.5m gaps

- 1. Created grid of cells 1.3m wide x 1.3m long
- 2. Placed cells along beds, avoiding bare soil
- 3. Mean values for each wavelength calculated for each cell, then converted to points
- Vegetation indices calculated from averaged data

Onions – trial results

- Predicted yield map created from NDVI (second drone flight), according to correlation with sample plot yields.
 - Average yield at standard N: 71.2 t/ha
 - Yield benefit of standard N rate over low rate: 12.9 t/ha ± 1.4 (95% confidence interval)
- Vegetation indices also analysed directly
 - All VIs from both flights significantly higher for standard N rate than low rate

Case study 2: vining peas

- Research question: impact of starter fertiliser
- Five unreplicated fertiliser treatments
- Plots one tramline (36m) wide
- RGB and NDVI images of previous crops show persistently poor area in NW corner

Vining peas – new drone imagery

- Poor patch in northwest corner persisted in 2020
- Additional variation not noted in previous crops: low NDVI coinciding with treatments 1 & 2

 Multispectral images 9th June and 25th June included reflectance at five wavelengths

Vining peas – ground truthing

- 20 yield validation plots (4 per treatment); 2m x 4m
- Sampled mean MS bands for each sample plot
- Calculated VIs from averaged MS bands
- Correlated VIs with sample plot marketable yields

	1 st flight (9 June)	2 nd flight (25 June)
NDVI	0.86	0.70
MCARI2	0.83	0.77
Clgreen	0.85	0.71
Clrededge	0.85	0.71
MTCI	0.81	0.67
NDRE	0.87	0.70
REIP	0.85	0.62

Vining peas – trial results

- Yield map supplied by farmer, using fleet of bespoke yield mapping viners.
- Predicted yield maps created from NDRE and NDVI (first drone flight), according to correlations with sample plot yields.
- Results very similar, but far more precise with predicted yields

	Yield from yield map		
Treatment	Mean	Modelled difference from trt 3, with 95% confidence interval	
1		-3.29 ± 1.44	
2		-1.25 ± 1.35	
3	9.76		
4		0.41 ± 1.31	
5		0.03 ± 1.39	

Vining peas - real vs predicted yield maps

- Real yield map may overestimate field average, as data cleaning removes wheelings, poor patches, etc.
- NDVI prediction underestimates high yields due to saturation.
- NDRE prediction appears closest to real yield map.

Conclusions

- Crop reflectance data can correlate well with marketable yield
- Field scale experiments can be assessed accurately and efficiently using remote sensing data and Agronomics statistics
- Trials should be laid out with reference to underlying soil variation
- Treatments should be replicated where possible
- Project is developing a 'Framework for farmer led research'

www.inno-veg.org