



# Progress Toward Meaningful Monitoring: Confronting the Challenges of Survey Design in the United States

#### Amy V. Uhrin, Hillary K. Burgess

U.S. National Oceanic & Atmospheric Administration (NOAA) Marine Debris Program

> EUROqCHARM Final Conference October 11, 2023









# What is Monitoring?

- Systematic, repeated measurements of condition using the same methods in the same places over time so long-term comparisons can be made
- NOT haphazard site revisits or simply measuring something





# First Principles of Field Experimental Design





**Scale of inference** extent & resolution



Level of change desired



Sample locations



Sample replication



**Frequency & Duration** 

# Types of question-driven monitoring



**Targeted monitoring –** what <u>processes or drivers</u> influence the abundance and distribution of debris items of interest?



**Surveillance monitoring** – is there a <u>change in debris condition</u> that needs to be addressed through management interventions?



**Implementation monitoring –** were debris management interventions <u>implemented as prescribed</u>?



**Effectiveness monitoring –** were management interventions <u>effective</u> in reaching stated goals?



**Ecological effects monitoring –** were there <u>unintended consequences</u> of management intervention?

# First Principles of Field Experimental Design



Define the question



Scale of inference (extent & resolution)



Level of change desired



Sample locations



Sample replication



**Frequency & Duration** 



#### Two Dimensions of Scale with Examples of Subsequent Levels

#### **Extent**

overall size of study/monitoring area

| Spatial                                 | Temporal                     | Ecological                    |
|-----------------------------------------|------------------------------|-------------------------------|
| Global<br>National<br>Regional<br>Local | Decadal<br>Annual<br>Monthly | Debris assemblage of interest |

#### Resolution

size of sample units

| Spatial                       | Temporal                   | Ecological                                                  |
|-------------------------------|----------------------------|-------------------------------------------------------------|
| Shoreline<br>Transect<br>Plot | Monthly<br>Weekly<br>Daily | Specific debris size classes Specific debris material types |

# First Principles of Field Experimental Design



# First Principles of Field Experimental Design

- Statistical methods to
  - to identify desired level of detectable change / power
  - o to determine number of independent, replicated samples
  - to determine where & when, duration of sampling
- Iterative process to improve the power of the data



Analyze



# NOAA Marine Debris Monitoring & Assessment Project History

- 2009: on-site method development to estimate debris loads at the site level and to compare across land use types
- 2011: guideline development in response to Japan tsunami and anticipation of debris stranding on North American west coast





# **NOAA Marine Debris Monitoring & Assessment Project**

#### On-site method







# NOAA Marine Debris Monitoring & Assessment Project Citizen science goals

- Provide tools to partners
- Understand state of marine debris
- Guide and evaluate prevention
- Raise awareness









# NOAA Marine Debris Monitoring & Assessment Project Timeline



# NOAA Marine Debris Monitoring & Assessment Project Timeline









Questions 🔅

- Short-term (annual): What is the status of shoreline debris (counts per 100 m) in each of 10 regions across the US?
- Long-term (multi-year): How is shoreline debris load changing over time (year-to-year) in each region?





Scale of inference



| Scale of Inference                     |                      |                                                                                |  |  |  |  |
|----------------------------------------|----------------------|--------------------------------------------------------------------------------|--|--|--|--|
| Extent overall size of monitoring area |                      |                                                                                |  |  |  |  |
| Spatial                                | Temporal             | Ecological                                                                     |  |  |  |  |
| Regional                               | Annual<br>Multi-year | All debris items found on sandy/pebble shorelines that are publicly accessible |  |  |  |  |
| Resolution  size of sample units       |                      |                                                                                |  |  |  |  |
| Spatial                                | Temporal             | Ecological                                                                     |  |  |  |  |
| 100 meters of shoreline                | Monthly?             | All debris items ≥2.5 cm in size within 7 material types                       |  |  |  |  |



Level of change desired



- One year duration: reliable status estimate in terms of test size & test power
- **Multi-year duration:** trend detection of 20% or greater

- **Test size:** probability of incorrectly rejecting the null hypothesis if it is true; detecting a trend when there is not one; false positive
- **Test power:** probability of correctly rejecting the null hypothesis if it is true detecting a trend when there is one; true positive



Power analysis



- Applied trend models to historic shoreline data
- Estimated baseline status and variance under a number of scenarios for test size (false positives) and test power (true positives)
- Examined a range of sample sizes, temporal revisit designs, and monitoring durations
- Considered potential budget and resource constraints
- Received guidance and feedback from an expert panel



Frequency, duration, how many





- 62 sites per region
  - **Panel 1:** 12 sites visited annually per region, replicated quarterly
  - **Panel 2:** 50 sites visited once every 5 years (no within year replication)
- Revisit design yields 0.15 test size and 0.8 test power
- One year duration = reliable status estimates
- 11 year duration = detect trend of 30-50% over the duration

| $\left[ (1-0)_{4}^{12}, (1-4)_{1}^{50} \right]$ 62 unique sites, quarterly surveys at 12 sites |      |    |    |    |    |    |    |    |    |    |    |
|------------------------------------------------------------------------------------------------|------|----|----|----|----|----|----|----|----|----|----|
|                                                                                                | Year |    |    |    |    |    |    |    |    |    |    |
| Panel                                                                                          | 0    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| 1                                                                                              | 12   | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| 2                                                                                              | 50   | _  | _  | _  | 50 | _  | _  | _  | 50 | _  | _  |
| Total                                                                                          | 62   | 12 | 12 | 12 | 62 | 12 | 12 | 12 | 62 | 12 | 12 |

# **MDMAP National Survey Design**

Where to sample |



- Delineated the sampling frame (set of all possible sites)
- Generalized Random Tessellation Stratified sampling
  - spatially-balanced sites spread evenly over the sampling frame
  - relies on a known probability of site selection
  - inference is based on the random sampling distribution
  - fewer sites may be required
  - allows for oversampling
- 5000 sites selected per region
- Reviewing sites for suitability
- Including backup sites



# NOAA Marine Debris Monitoring & Assessment Project Timeline





# Thank you!

Amy V. Uhrin

Chief Scientist

amy.uhrin@noaa.gov



Hillary K. Burgess

Monitoring Coordinator
hillary.burgess@noaa.gov

