Standard ISO/CEN methods for monitoring microplastics

Example of analysis of microplastics in drinking water by vibrational spectroscopies for rationalizing the debate through ISO normalization

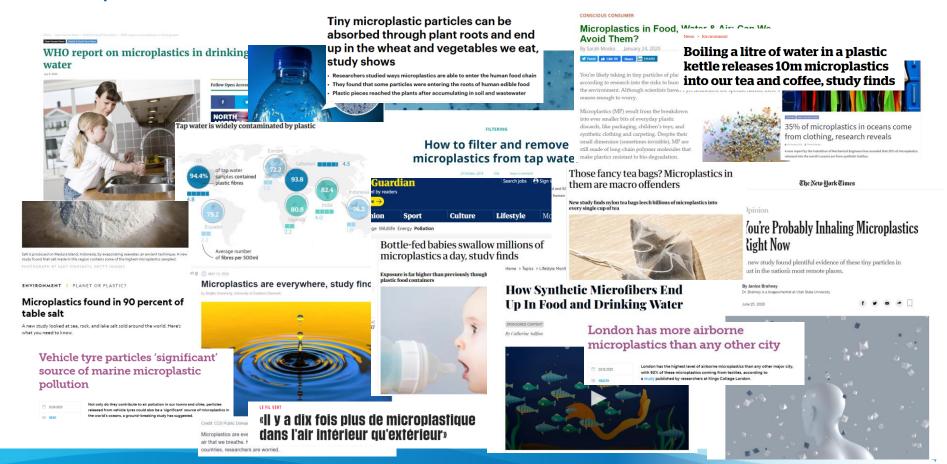
NIZAR BENISMAIL

NESTLE WATERS

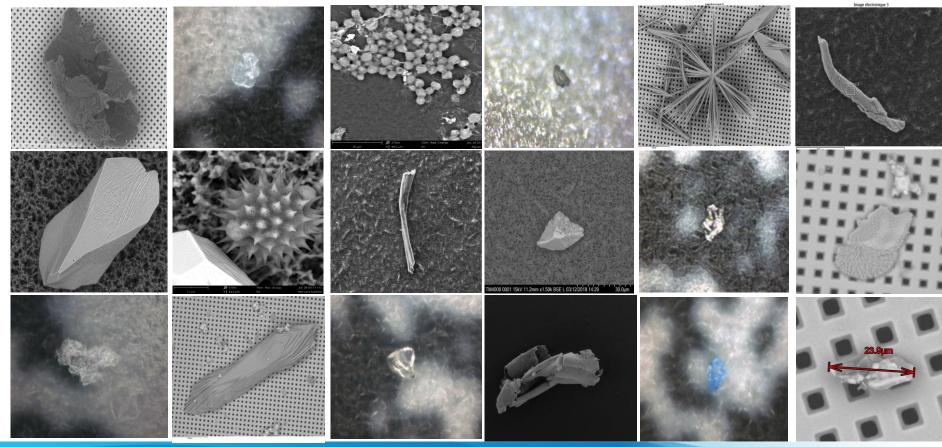
EUROQCHARM FINAL CONFERENCE - OCT 2023



Context of MicroPlastics


- 2 Methodologies & challenges for MPs analysis
- 3 Water method harmonization as opportunity for first standard

Microplastics interest


Google research with "Microplastics"

Microplastics interest

Are these particles / UFOs microplastics ?

1 Context of MicroPlastics

2 Methodologies & challenges for MPs analysis

3 Water method harmonization as opportunity for first standard

Microplastics methods : where were we ?

At the beginning

First studies used a microscope : all that seemed plastic to be "this is plastic"

Slowly better methods evolved but not yet standardized methods

Much of the published data is dubious : many scientists say "we can measure it" but few feel the need to prove that they measure correctly

Microplastics in Freshwaters and Drinking Water:

Critical Review and Assessment of Data Quality

Albert A. Koelmans^{†,*}, Nur Hazimah Mohamed Nor[†], Enya Hermsen[†], Merel Kooi[†],

Svenja M. Mintenig^{‡,§}, Jennifer De France^{‡,*}

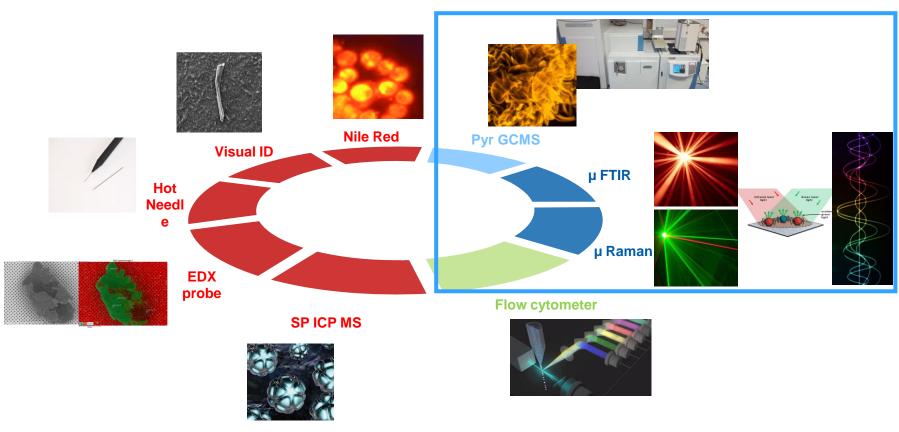
[†]Aquatic Ecology and Water Quality Management Group, Wageningen University, The Netherlands.

[‡]Copernicus Institute of Sustainable Development, Utrecht University, The Netherlands. [§]KWR Watercycle Research Institute, Nieuwegein, The Netherlands.

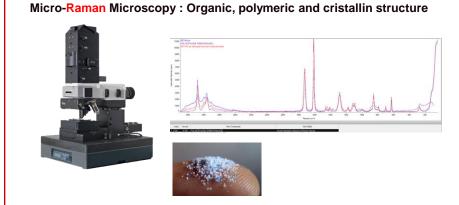
[†]World Health Organisation (WHO), Avenue Appia 20, 1211 Geneva, Switzerland

3.3 Conclusions We conclude that based on the limited number of high quality studies identified, standardization of microplastic analysis in water is needed. Quality assurance criteria that require the most improvements are sample treatment, polymer identification, laboratory preparation, clean air conditions and positive controls. In addition to ensuring that individual studies are of higher quality in order to achieve more confidence in study findings, standardized methods will allow reproducibility and comparability of results and will lead to the quality of data that are needed to conduct risk assessments. Among water types,

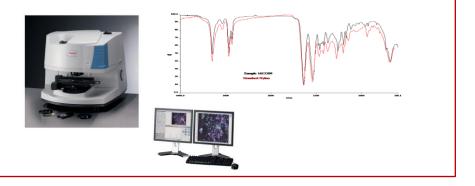
Microplastics – Technical Working Group on clean water – June 2018


Assurance

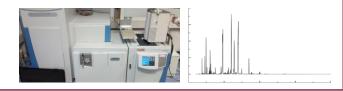
Center


Nestle

DANONe

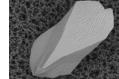

Microplastics methods : existing methodologies in scientific journals/media

Microplastics methods : adequate equipments



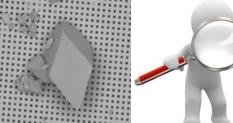
Micro-FTIR Microscopy : Organic, polymeric and cristallin structure

In case of high amout of MPs in complex environmental matrix


Pyr GC-MS : organic structure and quantification

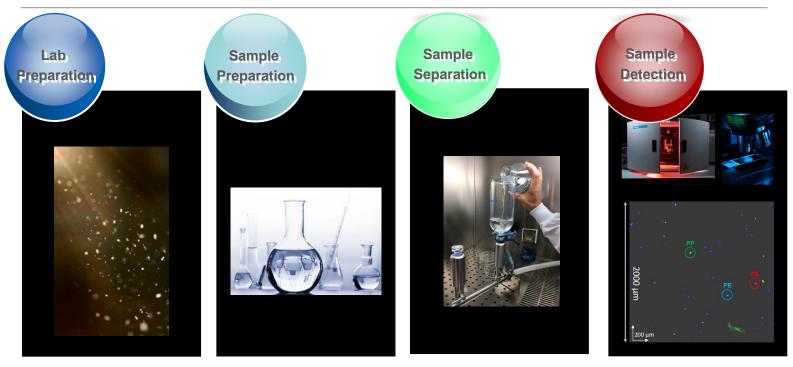

Complementary identification

MEB-EDS : electronic microscopy and EDX probe for elemental composition


2017/07/26 NM D4.7 x800

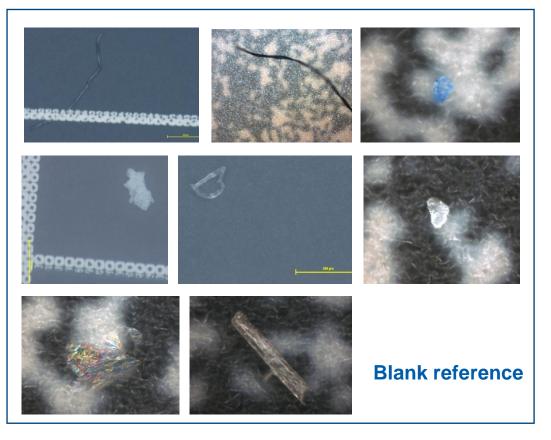
Microplastics methods : technical summary of where we stand

- Although microplastics (MP) are recognized as an emerging contaminant in the environment
 - No standardized analytical methods : currently neither sampling, extraction, purification nor identification approach are standardized, making the increasing numbers of MP studies hardly comparable
 - No Regulatory limit for drinking water
- Only reliable identification but time-consuming methods through Pyr-GC/MS or Spectroscopy (Micro-Raman or Micro-FTIR)
- As microplastics ubiquitous in environment (Air), difficult to have lab blank/reference non polluted



Let's take the example of the easiest matrix to analyze : clean water

We want : reliable, fast and reproducible microplastic quantification

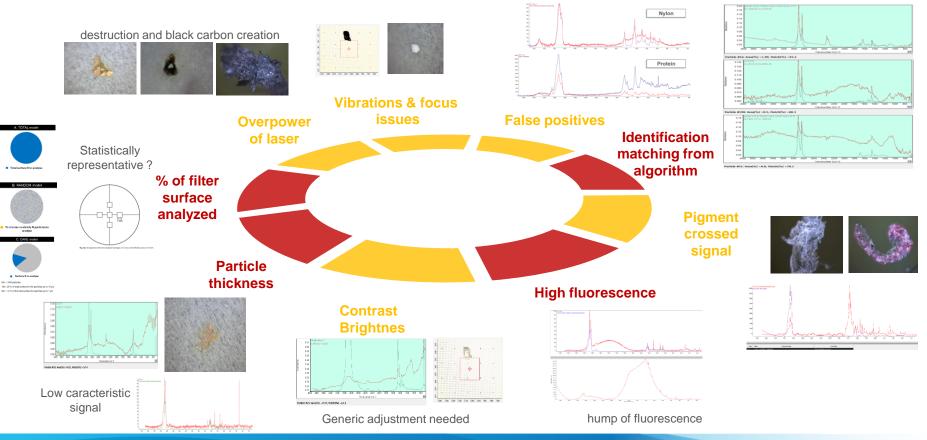

- Improved sample preparation faster, better recovery, low contamination
- Improved full automated microplastic detection
- Results as number & polymer identity at particle size down to 1 to 10 μm

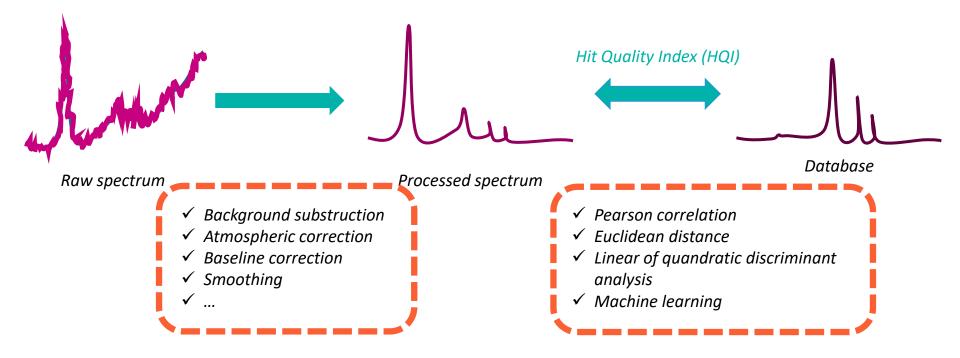
Microplastics spectroscopic methods : extremely challenging to develop

Developing reliable method to count and identify MPs is extremely challenging

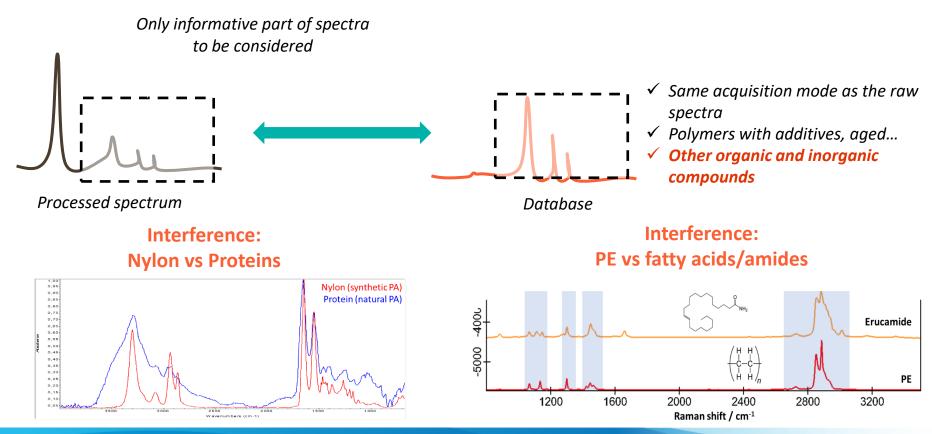
Microplastics methods : examples of cross contamination from labs

Air

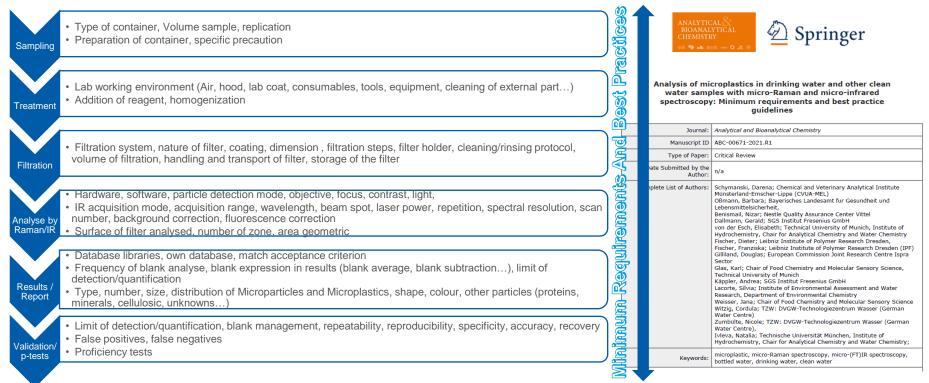



Microplastics methods : fallpits in blank contamination

Microplastics spectroscopic methods : fallpits in signal acquisition

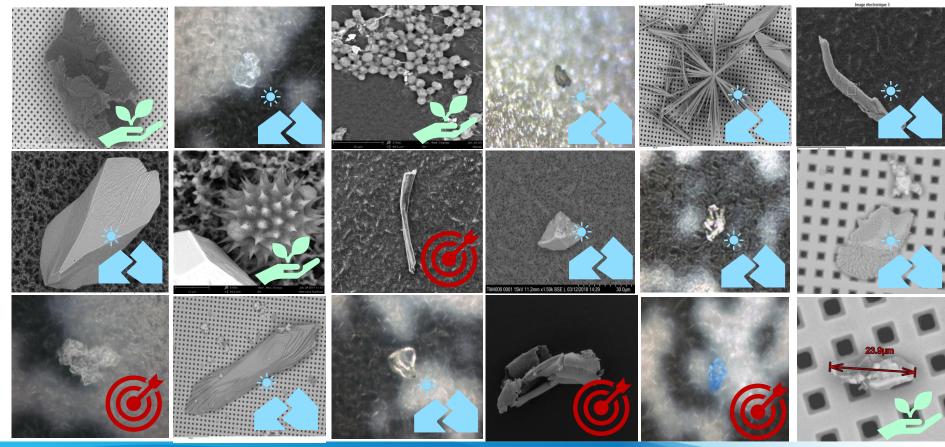


Microplastics spectroscopic methods : data analysis optimization



TO BE ADAPTED BY LABORATORY

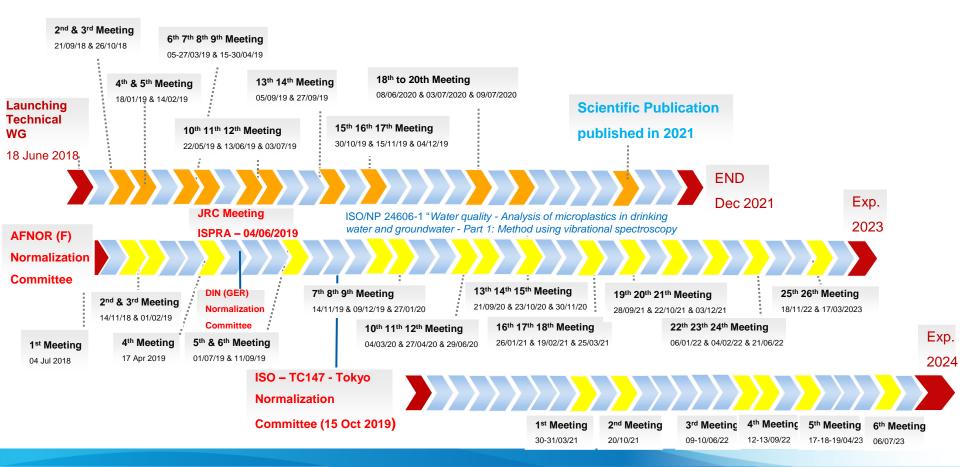
Microplastics spectroscopic methods : interferences in signal acquisition



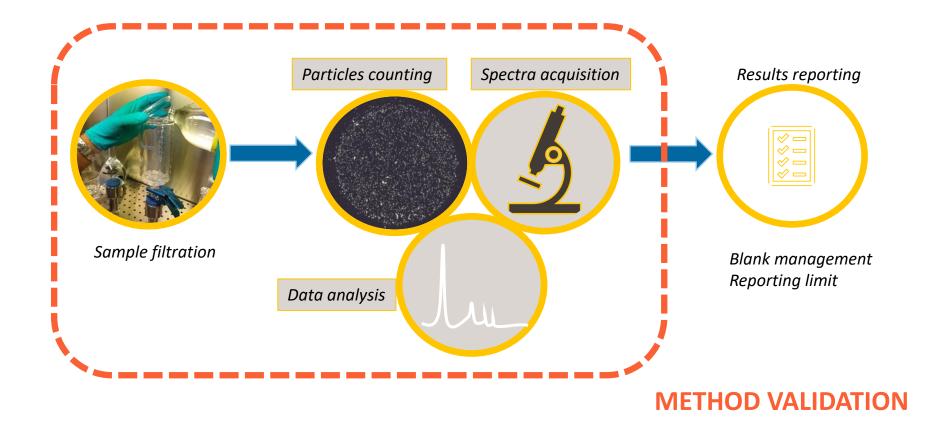
Microplastics spectroscopic methods : all steps optimized under TWG

https://doi.org/10.1007/s00216-021-03498-y https://link.springer.com/content/pdf/10.1007/s00216-021-03498-y.pdf.

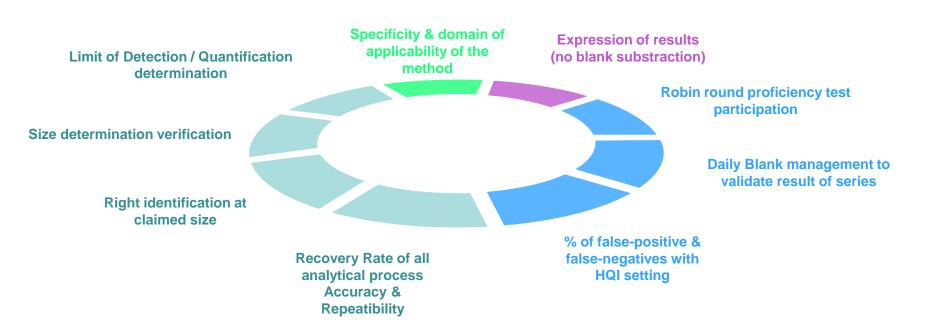
Are these particles / UFOs microplastics ?

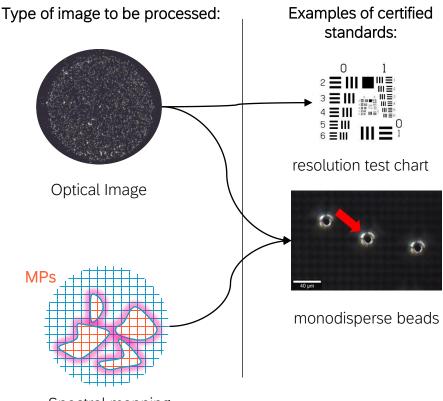


1 Context of MicroPlastics


2 Methodologies & challenges for MPs analysis

3 Water method harmonization as opportunity for first standard


Microplastics - from TGW to ISO Normalization : a long journey


Microplastics - from spectroscopic methods to ISO standard

Microplastics « Spec » standard : validation & verification of the method

Microplastics « Spec » standard : verification of particle size measurement

What affects the size measurement?

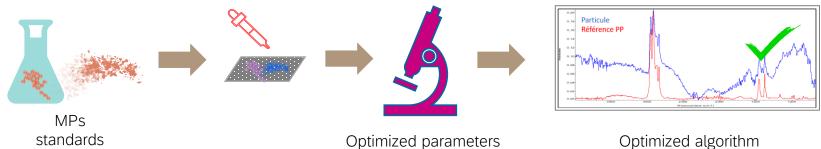
Image resolution (pixel size)

Contrast (or spectral)

treshhold

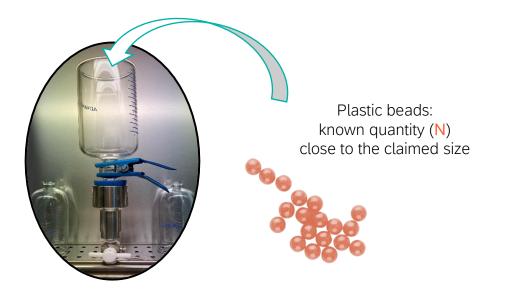
Filter pattern dimensions

Particle artefacts


Particles agglomeration

Define the trueness of the size measurement

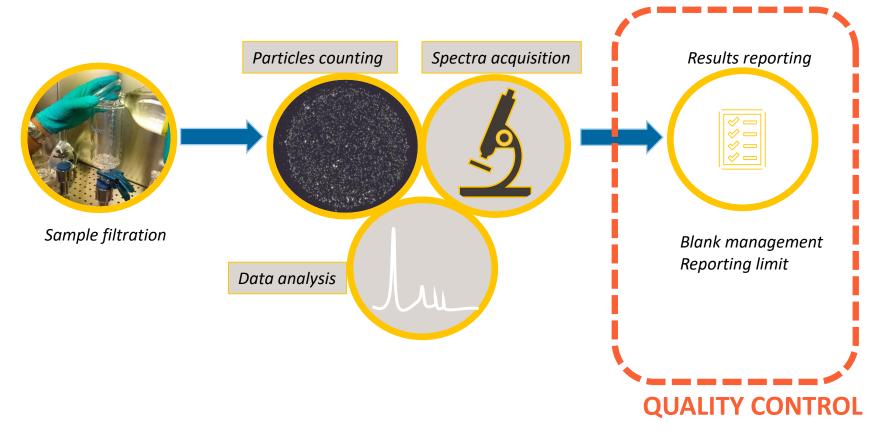
Microplastics « Spec » standard : verification of right identification at claimed size

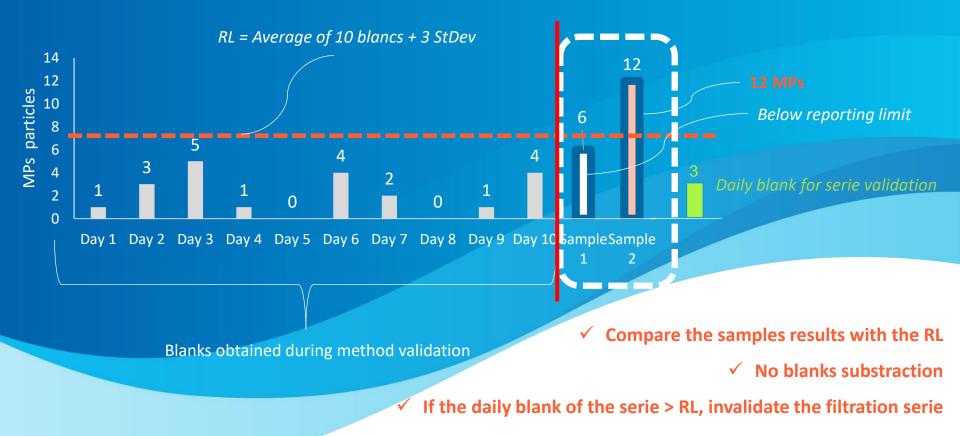


of spectra acquisition

Optimized algorithm and HQI

... the laboratory must record the spectrum and correctly identify at least 4 different types of microplastics at the claimed size (lower limit of size)


Microplastics « Spec » standard : verification of recovery rate at claimed size


Recovery rate = $N_{after filtration} / N \cdot 100\%$

RECOVERY RATE > 70 %

Microplastics « Spec » standard : results report

Microplastics « Spec » standard : how to define and use reporting limits

Microplastic : detailed structure of norm ISO 16094-2 : 2023 (Spectroscopy)

Contents

1	scope	•
2	Normative references	
3 3.1 3.2	Terms, definitions and abbreviations Terms and definitions Abbreviations	
4	Principle	4
5	Interferences	5
6 6.1 6.2 6.3 6.4 6.5	Reagents, consumables and reference materials	
7 7.1 7.2	Precautions for the laboratory environment, apparatus and materials	
7.2.1 7.2.2 7.2.3 7.2.4 7.3 7.4	Infrared (IR) apparatus coupled to microscope, consisting of: Raman coupled to microscope, consisting of: Filtration system Characteristics of filters: type and sizes Precautions and cleaning protocol for materials Bottles or containers for sampling	
8	Sampling	
9 9.1 9.2 9.3	Operating protocol	10 10 10
9.4 9.4.1	Adjustment and calibration of instruments Infrared microscope	
9.4.1 9.4.2 9.5 9.6	nn area microscope	11 11
9.6.1 9.6.2 9.6.3	Analysis of the meet softace. Choice of the optical objectives	12
9.6.5 9.6.5 9.6.5	To TAL Footen	13 14
9.6.7 9.6.8	Particles enumeration and size description IR spectra acquisition and particles identification	15
9.6.9 9.7	Raman spectra acquisition and particles identification Sampling and analytical control blank analysis	16
9.8 9.9	Spectra treatment Criteria of chemical composition identification	10

9.10	Spectral interferences				
10 10.1 10.2 10.3 10.4 10.5	Method characterization and verification 18 Verification of the particles size measurement accuracy 18 Verification of microplastics identification and classification at claimed size 18 Determination of minimal HQI for automatic identification 18 Determination of the reporting limits of the method 19 Verification of microplastics recovery rate of the method 20				
11	Quality check of analytical control blanks in test series				
12	Expression of results				
13	Test report21				
Annex A (informative) List of characteristic wave numbers for the main polymers					
Annex B (informative) Creation of an internal spectral database					
Annex C (informative) Description of known interference during acquisition of spectral fingerprint - Presence of pigments					
Annex	D (informative) Description of known interference during acquisition of spectral fingerprint - Interference between natural and synthetics polyamides (proteins and nylon)				
Annex	E (informative) Description of known interference during acquisition of spectral fingerprint - Interferences of molecules with long C-H chain				
Annex F (informative) Quantum Cascade Laser (QCL) IR microscopy					

ISO/DIS 16094-2:2023 —

Water quality — Analysis of microplastic in water — Part 2: vibrational spectroscopy methods for waters with low content of suspended solids including drinking water

- analysis of microplastics by vibrational spectroscopy methods (Raman, µ-InfraRed instruments): generate information about particle size, particle type and particle numbers
- detection of microplastics in waters with low content of natural suspended solids, e.g. drinking water, groundwater or laboratory water.
- very specific technical description for harmonizing all the analytical steps: choices of filters, precautions to minimize cross contamination, calculation of the blank and limit of reporting of the laboratories, statistical models to deliver comparable results, data treatment, interpretation and reporting
- Inclusion of mandatory controls / validation procedures

Microplastics : ISO TC147 « Water Quality »

ISO/TC 147 - SC6 - WG 16

ISO/CD 5667-27, Water quality – Sampling – Part 27: Sampling for microplastic particles and fibres in water
> Very general for different sorts of water, without specific recommendations

ISO/TC 147 – SC2 – JWG 1 with ISO TC 61 (Plastics)

Title: Plastics (including microplastics) in waters and related matrices

Convenor: Nizar Benismail (F); Nestle Waters (previous Convenor: C.G. Bannick (D)) / Ulrike Braun (D); German Environment Agency

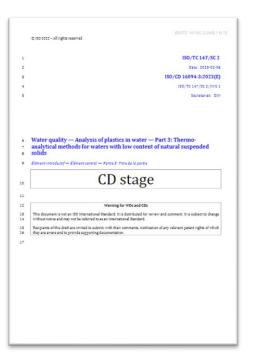
Countries: Austria, Belgium, Croatia, Finland, France, Germany, Italy, Japan, Korea, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, United States

Liaisons: European Commission, ECOS (Environment), UILI, VAMAS, IEC, ISO/TC 45 "Rubber and rubber products, ISO/TC 334 "Reference materials", ISO/TC 146 "Air Quality", ISO/TC 61/SC 14 "Plastics"

Scope: Standardization of methods for the characterization and quantification of plastics including microplastics and related polymers in water ...

NOTE: The JWG 1 offers to other interested technical committees to cooperate in the development and application of methods and methodologies elaborated in this group

Series of documents ISO - 16094: 2023 Water quality — Analysis of microplastics


Microplastics : ISO TC147 « Water Quality » & CEN

- On going process for standardization at FR (AFNOR) and ISO Level now with ISO TC147 / SC2 / JWG1 :
- Series of ISO 16094 Standards under Vienna agreement : Water quality Analysis of microplastics
 - Part 1: General and sampling (CD state)
 - Part 2: Vibrational spectroscopy (DIS state)
 - Part 3: Thermoanalytical methods (CD state)
 - Part 4: Sample preparation methods (On going)
 - Part 5: Ecotoxicological methods (To start)

ISO 16094 – Part 2 :

- By Sept 2023 DIS Submission (Enquiry)
- From Oct 2023 to December 2023 ; interlaboratory trial for norm validation
- By March 2024 final limit for Publication

Microplastics - Thermoanalytical methods ISO/CD 16094-3: 2023

ISO/CD 16094-3:2023 —

Water quality — Analysis of microplastic in water — Part 3: thermoanalytical methods for waters with low content of suspended solids including drinking water

- general recommendations for the analysis of microplastics by thermoanalytical methods coupled with analysis of decomposition gases: determination of mass fractions and polymer type.
- detection of microplastics in waters with low/moderate content of natural suspended solids.
- general aspects for sample preparation and the application of thermoanalytical methods, and also includes related terms and definitions.
- very detailed technical description for the investigation of water filtrates using thermal extraction desorption gas chromatography/mass spectrometry (TED-GC/MS) and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) and investigation of isolated particles using Py-GC/MS.

Microplastics : Running standardization activities about "Microplastics"

	ISO		CEN
Area "plastics "	ISO/TC 61 "Plastics" ISO/TC 61/SC 14 "Environmental aspects" WG 4 Characterization of plastics leaked into the environment (including microplastics) and quality control criteria of respective methods	EN ISO 17422:2018 Plastics – Environmental aspects – General guidelines for their inclusion in standards CEN ISO/TR 21960: 2020 Plastics – Environmental aspects – State of knowledge and methodologies EN 17615:2022 Plastics – Environmental Aspects – Vocabulary ISO/FDIS 24187: 2023 Principles for plastic and microplastic analysis present in the environment	CEN/TC 249 Plastics WG 24 Environmental aspects
Area "water"	ISO/TC 147 Water Quality SC 2 "Physical, chemical and biochemical methods" JWG 1 Joint ISO/TC 147/SC 2 - ISO/TC 61/SC 14 WG: Plastics (including microplastics) in waters and related matrices SC 6 "Sampling (general methods)" WG 16 Sampling for microplastics	ISO/CD 16094-1 ISO/DIS 16094-2:2023 — Water quality — Analysis of microplastic in water — Part 2: vibrational spectroscopy methods for waters with low content of suspended solids including drinking water ISO/CD 16094-3 ISO/PWI 16094-4 ISO/CD 5667-27, Water quality – Sampling – Part 27: Sampling for microplastic particles and fibres in water	Agrees to takeover documents of ISO under Vienna agreement
Area "textiles"	ISO/TC 38 Textiles WG 34 Microplastics from textile sources WG 35 Environmental aspects	ISO/DIS 5157, 2022 Textiles – Environmental aspects – Vocabulary EN ISO 4484-1: 2023 Textiles and textile products – Microplastics from textile sources – Part 1: Determination of material loss from fabrics during washing ISO/DIS 4484-2: 2023 Textiles and textile products – Microplastics from textile sources – Part 2: Qualitative and quantitative evaluation of microplastics ISO/FDIS 4484-3: 2023 Textiles and textile products – Microplastics from textile sources – Part 3: Measurement of collected material mass released from textile end products by domestic washing method	
Area "soil"			CEN/TC 444 Environmental characterization of solid matrices Task group "Microplastics"

Microplastics : also some protocols from US

US ASTM

- ASTM D8332 20 : Standard Practice for Collection of Water Samples with High, Medium, or Low Suspended Solids for Identification and Quantification of Microplastic Particles and Fibers
- ASTM D8333 20 Standard Practice for Preparation of Water Samples with High, Medium, or Low Suspended Solids for Identification and Quantification of Microplastic Particles and Fibers Using Raman Spectroscopy, IR Spectroscopy, or Pyrolysis-GC/MS

Southern California Coastal Water Research Project Authority

- Standard Operating Procedures for Extraction and Measurement by Infrared Spectroscopy of Microplastic Particles in Drinking Water
- Standard Operating Procedures for Extraction and Measurement by Raman Spectroscopy of Microplastic Particles in Drinking Water
- SCCWRP SOP for all waters, sediments to be issue under several weeks

Microplastics method in clean water : key messages

- Only reliable identification at low numbers and low size but time-consuming through Spectroscopy : Micro-Raman or Micro-FTIR
- As MPs ubiquitous in lab environment (air, consumable,...), difficult to have lab blank/reference non polluted
- Numerous parameters, complex settings, fine tuning and quality criteria for obtaining expressing reliable results
- Standard will impose laboratories to verify and validate their method implementation. For Spectroscopy measurement, it will be done according to size measurement, right identification at claimed size, recovery rate, limit of reporting and automatic settings.
- No regulation yet, but new EU Directive for Drinking Water, as California State Water Resources Control ask for monitoring
- No standardized analytical methods yet but strong contribution to an on-going process for water method standardization at AFNOR (FR) and ISO Level (ISO 16094-2:2023 & ISO 16094-3:2023) under Vienna agreement.
- Some protocols have been also been issued in US by ASTM & SCCWRP

THANKS to Alina Maltseva & Ulrike Braun